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Transparent Exopolymeric Particles

measures of particle size, including particle mass m. The
differential particle size spectrum n(d), frequently known
simply as the particle size spectrum, is a convenient means
to represent particle distributions as a density function. The
size spectrum is effectively the number concentration per
unit particle size interval and is related to N(d) by

It is relatively simple to transformbetween spectra based
on differentmeasures of particle size by using the chain rule
if one knows the relationship between the measures being
used. For example, the relationship between spectra ex-
pressed in terms of conserved volume (ν ) (π/6)d3) and d is
given by

The particle number size spectrum is a useful function
forcalculatingotherpropertiesofasystemsuchas thevolume
spectra (i.e., thedistributionofparticle volumeconcentration
with size) that can be used to calculate the total particulate
volume. When dealing with coagulation theory, it is con-
venient to express the particle size spectrum in terms of
particlemass as this is conserved inparticle collisions. Using
theabove transformations,particle size spectra fromadiverse
group of instruments have been combined into a single
spectrum covering a wider range of particles (13). Such
transformations require that there be one dominant source
particle for the fractal scaling to be valid.

Coagulation theory describes changes in the particle size
distribution resulting from particle collisions involving all
relevant particle size classes. The rate atwhich twoparticles

FIGURE 1. Picture of marine snow aggregate taken in situ, courtesy of A. L. Alldredge. The aggregate is about 1 cm across. It is composed
primarily of marine diatoms, although fecal pellets can also be seen on it. The aggregate is held together with transparent material,
presumable TEP. Several smaller aggregates can be identified as part of it, as can extensive void regions. Reprinted from cover photograph
of Deep-Sea Res. II, Vol. 42, No. 1, 1995, with permission from Elsevier Science.
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Figure 1
(a) Size distribution of organic matter in the ocean as a percentage of total organic carbon (TOC) (top) and depth distributions of total
dissolved organic carbon (DOC), high-molecular-weight (HMW) DOC, and low-molecular-weight (LMW) DOC (bottom) at the
Hawaii Ocean Time-Series site. Panel data from Sharp (1973), Benner et al. (1997), and Kaiser & Benner (2009). (b) Conceptual
diagram of the biological pump and the biological, physicochemical, and photochemical processes shaping the size distribution of
organic matter. Panel adapted from Buesseler et al. (2001), US JGOFS brochure.

LMW molecules (Burdige & Gardner 1998). These simple but remarkable observations lead to
numerous insights about the pathways of carbon flow and the reactivity of organic matter in the
ocean.

The size distributions of organic matter presented in this review are not precise, owing to the
variable pore sizes and retention characteristics of commercial membranes and to the different
filtration conditions used by the oceanographic community (Benner 1991, Buesseler et al. 1996,
Guo & Santschi 1996, Benner et al. 1997, Walker et al. 2011). We have considered this shortcom-
ing and focus on the three broad size classes of organic matter most commonly separated using
micro- and ultrafiltration membranes: suspended POC (pore size of 0.1–0.8 µm), HMW DOC
(pore size of 1–200 nm), and LMW DOC (pore size of <1 nm).

PROCESSES SHAPING THE SIZE DISTRIBUTION
OF ORGANIC MATTER
Biological processes play a dominant role in shaping the size spectrum of organic matter in the
ocean. Enzymes mediate the synthesis of macromolecules needed for growth and then disassemble
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Too many interactions
going on at the same time
Wide range of spatial and
temporal scales involved
Mastering different
disciplines is needed
Experimental data are not
that easy to obtain
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Size-class models

The second bloom was strongly dominated by
Skeletonema costatum (average size of colonies
equal to 11 mm). There was a time lag after each
bloom before aggregate peak concentrations were
achieved (Fig. 1B–G). TEP accumulated during
the first bloom and then kept their high concen-
tration to the end of the experiment.

3. Data treatment

3.1. Transformation of signals to a carbon
comparable content

Particle data were recorded with two different
techniques (beam attenuation for small particles
and the optoelectronic system for aggregates)
whose signal must be put in the same format

before any comparison or numerical treatment of
them is made. The transformation of those signals
into carbon content puts them in the appropriate
format for the diagnostic and prognostic analyses
performed in the following sections.

Because of the small volume (100ml) used to
determine the elemental composition of suspended
matter during the bloom period, the recorded
particulate organic carbon concentrations (POC)
are more likely to reflect the amount of carbon in
small particles than in aggregates (Chung et al.,
1998; Bishop, 1999). Thus, in the time series for
both POC and beam attenuation (c), a good
agreement is evident in the way they evolve during
the experiment except for the period just after the
second and highest aggregate bloom (Fig. 1A),
when carbon does not follow the same general
pattern of bloom decay as other variables. This

Fig. 1. (A) Time series of chlorophyll (open circles), POC (filled circles), TEP (squares) and beam attenuation (c; continuous line). (B)–
(G) Represent volume concentration of aggregates during the experiment.

J. Ruiz et al. / Deep-Sea Research I 49 (2002) 495–515498

(Ruiz, Prieto, Ortegón, Deep-Sea Res. 49 (2002))
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Size-class models

To include primary production we used the Jassby
and Platt (1976) formulation with the same values
for photosynthetic parameters as in Fasham et al.
(1990) and including Michaelis–Menten factors for
limitation by nitrogen and phosphorous (with Km
equal to 0.1 and 0.01 mM, respectively). This
simple formulation was able to reproduce the
second bloom of aggregates and the decay of small
particles provided it was initialized with the values
of Cagg and Csmall at the time of the bloom. The
simulated process of aggregate formation is,
nevertheless, smoother and of a less explosive

nature compared to the records obtained in the
mesocosm. Also, the formulation with the same
parameter values does not reproduce so well the
aggregate dynamics of the first bloom as it under-
predicts aggregate concentration. This probably
reveals a greater tendency for aggregation (a higher
b) for the cells of the first bloom (mainly Nitzschia
closterium ) than for those of the second (mainly
Skeletonema costatum). This is also evident in the
microscopic observations of phytoplankton sam-
ples from the first bloom, when Nitzschia formed
dense clots that were visible after fixation and
processing with the Utherm .ohl technique as well as
with electronic microscopy (Prieto et al., submitted
for publication). The same procedure followed for
the calculation of the aggregation kernel during the
second bloom resulted in a numerical value of
3.74 l d!1mgC for the first one (Fig. 10B). This
reflects both the higher tendency for aggregation of
the cells in the first bloom and the fact that different
phytoplankton cells produce aggregation kernels
with numerical values of the same order.

5.3. Formulation with high size resolution

A more detailed modeling approach was also
followed for trying to overcome the two handicaps
detected by considering only two size classes, i.e.
the onset of aggregates is a process more
‘‘explosive’’ than we are able to reproduce and
the value for the parameters depends on the
phytoplankter generating the bloom. The fitting
of parameters for a system of differential equa-
tions that resolves the aggregate size spectra
requires specialized mathematical techniques for
optimization. The system of equations is:

dC1

dt
¼C1

X

7

j¼1

b11jCj þ
X

7

i¼1

Z1iCi

þ primary production;

dCk

dt
¼
X

7

i¼1

X

7

j¼1

bkijCiCj þ
X

7

i¼k

ZkiCi; ð2Þ

where primary production is modeled as explained
before. The Zki are the members of a (7& 7)
rupture matrix with a structure like the one
described in Ruiz and Izquierdo (1997), where k

Fig. 10. (A) Time derivative of Cagg versus the product
Cagg&Csmall during the period in which this derivative reaches
its maximum values (days 22–24). The effect of sedimentation
on Cagg derivatives is canceled by using the equation in Fig. 9.
(B) Same as (A) but for the period of the first bloom (day 14).
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duration of the experiment (866 h) and the
maximum concentration observed for size class 1
(3.92mgC l!1) respectively. In formal mathemati-
cal terms, the dimensionless system of ordinary
differential equations derived from (2) can be
represented as the following initial value problem:

#y’ðyÞ ¼ Fðy; #yðyÞ; sÞ; yA½y0; y0 þY';
#yðy0Þ ¼ h; ðC:1Þ

where y and Y are the dimensionless time and
duration of the experiment, respectively, F is a
locally Lipschitz continuous function and

#y yð Þ ¼

#y1ðyÞ
y
#y7ðyÞ
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Vector s contains the p parameters to be found
(p ¼ 95 as it includes the 68 terms from the
aggregation tensor, b; and the 27 from the break-
up plus sedimentation matrix, Z). Vector #yðyÞ
contains the (simulated) time evolution of the
dimensionless concentration for the 7 size classes
and vector h the initial (measured at y ¼ y0)
dimensionless particle concentration. The method
works on the conjecture that measured dimension-
less data yðyÞ are a solution of Eq. (4) for a certain
choice of s: The optimization procedure needs a
smooth version of the data to be operative. Thus,
in order to obtain the yðyÞ; we filtered these data
with the same procedure as described above but
eliminating variances at frequencies over 1 d!1

rather than 3 d!1 (which is the cut off frequency
used in the rest of the paper). The following
function is defined to calculate the elements of
vector s:

JðsÞ ¼
1

2

Z y0þY

y0

X

7

i¼1

ðyðyÞ ! #yðyÞÞ2
" #

qðyÞ dy

þ ZðsÞ; ðC:2Þ

where Z is a penalization function. The optimiza-
tion problem consists of finding the elements of s
that minimize J and is treated via the conjugate
gradient algorithm (Glowinski, 1984). The func-

tion q works like a preconditioner to accelerate the
convergence of the minimization process. Once
calculated, the dimensionless elements of s that
minimize J are transformed to their dimensional
forms by using the characteristic time and
concentration scales defined above. These elements
are presented in Tables 1 and 2.
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Size-spectrum models: the coagulation equation

∂n(t , x)

∂t
=

1
2

∫ x

0
K (x − y , y)n(t , x − y)n(t , y) dy

−
∫ ∞

0
K (x , y)n(t , x)n(t , y) dy .

x is a measure of size
Binary interactions (x) + (y)→ (x + y)

K (x , y) binary coagulation kernel

Plus additional terms, e.g.:
sedimentation: −n(t , x)w(x)/Z
synthesis: +I(t , x)

binary or multiple fragmentation
(Burd, Jackson, Moran, Lochmann, Mari, Stemann, Ianson)
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The coagulation equation

Aggregate number: m0(t) =

∫ ∞
0

n(t , x) dx

Volume (mass): m1 =

∫ ∞
0

x n(t , x) dx

Gelling kernels: there exists Tg ≥ 0 such that m1(t) = m1(0) for
each t ∈ [0,Tg) and m1(t) < m1(0) for t > Tg .

Kernels such that K (x , y) ≤ C(1 + x + y) are non-gelling.
For those we have:

m1(t) is preserved.
m0(t) decays to zero as t →∞.

G. Batanero, J.Calvo, I. Reche Model calibration for aggregation-sedimentation dynamics



The coagulation equation: some kernels

Brownian kernel: βBr (x , y) ' c(x1/3 + y1/3)(x−1/3 + y−1/3)

Shear kernel: βsh(x , y) ' c(x1/3 + y1/3)3

Differential sedimentation kernel:
βsed (x , y) ' c(x1/3 + y1/3)2|x1/3 − y1/3|

Rectilinear and curvilinear formulations
Fractal dimensions
Bio-chemical interactions, etc

Modeling from first principles vs (nonparametric?) calibration
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Pantano de Cubillas

(Wikipedia: Enrique Íñiguez)
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Measurement principle 

V. MLS theory & measurement principle V-6 

3. Measurement Principle 

The analysed dispersion is contained in a cylindrical glass cell. The light source is an electro 
luminescent diode in the near infrared (Oair=880nm). Two synchronous optical sensors 
receive respectively light transmitted through the sample (180° from the incident light, 
transmission sensor), and light backscattered by the sample (45° from the incident 
radiation, backscattering detector) (Figure V-8). 
 
Note: 
The instrument is self-calibrated to correct effects due to thermal drifts of the opto-
electronic head and ageing of the components. 

 
 

Figure V-8 Measurement principle of the Turbiscan®  

The Turbiscan® LAB works in scanning mode: the optical reading head scans the length of 
the sample (up to 55 mm), acquiring transmission and backscattering data every 40 µm. 
This is the most complete analysis mode enabling the detection of the migration 
phenomena. 
These curves provide the transmitted and backscattered light flux in % relative to standards 
(suspension of monodisperse spheres and silicone oil) as a function of the sample height 
(in mm). 
These profiles build up a macroscopic fingerprint of the sample at a given time. 
Transmission is used to analyse clear to turbid dispersions and backscattering is used to 
analyse opaque and concentrated dispersions. 
 

Transmission 
detector 

Light source 

Backscattering 
detector 
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I. Quick start guide for performing an analysis & interpret 
the data 

1. Preparation of the Sample 

1.1. Preparation of the Cell 

(a) Preparation of the Stopper 
9 Take a black cap (designed specifically to optimise the positioning of the cell). 
9 Insert a seal in the cap to prevent leakage from the cell (grey side visible). 
9 Stick a bar code on the flat side of the cap (optional). 
9 Stick a label on the curved side (optional). 

(b) Preparation of the measuring cell 
9 Take a new cell. 
9 Clean the outside of the cell with a clean, non-abrasive tissue. 
9 Check for significant marks on the glass surface. If any, take another cell. 

1.2. Sampling 

9 Place the clean cell in the provided holder. 
9 Shake gently (if possible) the product to be analysed. 
9 Fill the cell with the product to be analysed, up to the height of the holder, as 

shown below (around 20 mL, which corresponds to approx. 42 mm). 
 
Note: 
The implementation of filling, use, recovery, evacuation and disposal operations of used 
products is the responsibility of the user. 
 
Note: 
The products used must not be harmful for the health and safety of people. The user will 
be held responsible for the use of toxic or explosive products. 
 

 
 

9 Check the quality of the meniscus (see below). 
 

 
 

9 Close the cell with the cap, previously prepared. 
 

Note: 
The quality of the meniscus is highly important in order to get good data. More information 
about meniscus quality can be found in the sections IV.2.1 and VI.1.  

1 2 3 4 

1. Good and neat 
2. Bad meniscus, not neat 
3. Bad meniscus, foam 
4. Bad meniscus, not neat and 

air bubbles 

(IESMAT)
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Sample measurements
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Temporal dynamics for the average size

Lambert–Beer’s law

T = T0 exp
(−3riφQs

d

)
d = d(t) average particle diameter

For a constant coagulation kernel K (x , y) = K :

d(t) = κ1(1 + κ2t)1/3
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Temporal dynamics for the average size

Lambert–Beer’s law

T = T0 exp
(−3riφQs

d

)
d = d(t) average particle diameter

For a constant coagulation kernel K (x , y) = K :

d(t) = κ1(1 + κ2t)1/3

vol(t) =
m1

m0(t)
and

d m0

dt
= −K

2
m2

0.
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Temporal dynamics for the average size

Lambert–Beer’s law

T = T0 exp
(−3riφQs

d

)
d = d(t) average particle diameter

For a constant coagulation kernel K (x , y) = K :

d(t) = κ1(1 + κ2t)1/3

vol(t) =
m1

m0(0)
+

m1K
2

t and d(t) =

(
6
π

vol(t)
)1/3

.
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Sample fits
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Recovering K (x , y): homogeneous kernels

There exists λ > 0 such that K (γx , γy) = γλK (x , y), ∀γ > 0.

Therefore, K (x , y) = yλκ(x/y) = xλκ(y/x).

Dynamical scaling hypothesis

For homogeneous kernels the long time behavior of the
coagulation equation is self-similar, that is,

n(t , x) ∼ t2νg(tνx) (here ν = − 1
1− λ < 0)

2g(z) + zg′(z) +
λ− 1

2

∫ z

0
K (z − y , y)g(z − y)g(y) dy

+(1− λ)g(z)

∫ ∞
0

K (z, y)g(y) dy = 0 .
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Inverse problem for the coagulation kernel

f (z) :=
1

m1

∫ z

0
w g(w) dw ,

ν

m1
z f ′(z) =

∫ 1

0
κ(ξ)Ω(ξ, z) dξ

Ω(ξ, z) := −
∫ z/ξ

z
1+ξ

yλf ′(y)f ′(y ξ) dy − 1
ξ

∫ z

z
1+ξ

yλf ′(y)f ′(y ξ) dy .

(Muralidhar, Ramkrishna, Wright, Tobin)
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Inverse problem for the coagulation kernel

1 Collocation points: zi ∈ [2−8,22], logarithmically spaced

2 B-splines in [0,1]: κ(ξ) =
∑p

i=1 ciβi(ξ)

3 Overdetermined system: X cT = d
with xij =

∫ 1
0 βj(ξ)Ω(ξ, zi) dξ and di = ν

M1
zi f ′(zi)

4 Regularization: minc ‖XcT − d‖22 + λ cWcT

5 Reduction to standard form: W = L LT and set uT = LT cT

6 Solve via SVD: XL−1 = UDV T

(Muralidhar, Ramkrishna, Wright, Tobin)
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Test-bed case

Constant kernel (λ = 1)

ν = −1 and g(z) = 4
m1

e−
2z
m1 . Thus, f ′(z) = 4z

m2
1
e−

2z
m1 .

wij =

∫ 1

0
βi(ξ)βj(ξ) dξ +

∫ 1

0
β′i (ξ)β′j (ξ) dξ +

∫ 1

0
β

′′

i (ξ)β
′′

j (ξ) dξ
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Recap

Aggregation in aquatic contexts is an important
mechanisms influencing the global carbon cycle.
A wide collection of processes are supposed to mediate
aggregation interactions. Reverse-engineering approaches
can be worth trying.
Aggregation in lakes and reservoirs: a constant
coagulation kernel may be accurate enough.
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