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The Lifshitz–Slyozov model


∂f (t , x)

∂t
+

∂

∂x
[(a(x)u(t)− b(x))f (t , x)] = 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

x f (t , x) dx = ρ , t > 0, plus an initial condition f in(x)

The aggregate distribution 0 ≤ f (t , x) as a function of
size x and time t .
The monomer concentration 0 ≤ u(t).
The total mass of the system, ρ > 0.
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[(a(x)u(t)− b(x))f (t , x)] = 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

x f (t , x) dx = ρ , t > 0, plus an initial condition f in(x)

The aggregate distribution 0 ≤ f (t , x) as a function of
size x and time t .
The monomer concentration 0 ≤ u(t).
The total mass of the system, ρ > 0.

aggregate number =

∫ ∞
0

f (t , x) dx

total aggregate size =

∫ ∞
0

x f (t , x) dx
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The Lifshitz–Slyozov model


∂f (t , x)

∂t
+

∂

∂x
[(a(x)u(t)− b(x))f (t , x)] = 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

x f (t , x) dx = ρ , t > 0, plus an initial condition f in(x)

The aggregate distribution 0 ≤ f (t , x) as a function of
size x and time t .
The monomer concentration 0 ≤ u(t).
The total mass of the system, ρ > 0.
The kinetic rates a(x) and b(x), describing how fast do
reactions take place:

attachment (a monomer attaches to a given aggregate)
detachment (a monomer detaches from a given aggregate)
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Lifshitz–Slyozov’s model: the classical rates

a(x) = x1/3, b(x) = 1

Relative rate

Φ(x) =
b(x)

a(x)
and Φ0 = lim

x→0

b(x)

a(x)

Transport field:

v(t , x) = a(x)u(t)− b(x) = a(x)(u(t)− Φ(x))

Ostwald ripening: large aggregates (x > Φ−1(u(t)))
grow larger at the expense of smaller ones (x < Φ−1(u(t))).
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Lifshitz–Slyozov’s model: the classical rates

Ostwald ripening: large aggregates (x > Φ−1(u(t)))
grow larger at the expense of smaller ones (x < Φ−1(u(t))).
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Figure 2. Transmission electron microscopy (TEM) analyses of LiNbO3 nanoparticles obtained 
after a reaction time of: (a) 30 h; (b) 36 h; (c) 48 h; and (d) 96 h. 

 

  

(LiNbO3 nanoparticles. Image: R. F. Ali, B. D. Gates, Chemistry of Materials 30 (2018))
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Lifshitz–Slyozov’s model: some existence results

a(x) and b(x) are globally Lipschitz.
a(x) ≥ 0 and b(x) > 0 for every x ≥ 0.
(outflow assumption) a(0)ρ− b(0) ≤ 0.

Theorem [Collet-Goudon]

Under the given assumptions, let f in ≥ 0 be such that∫ ∞
0

f in(x) dx <∞,
∫ ∞

0
x f in(x) dx ≤ ρ.

Then the Lifshitz–Slyozov system has a unique global solution
with f in as initial datum. [incidentally when a(0) = b(0) = 0 we
do not need f in to be integrable]

Superlinear behavior for the rates can lead to solutions
that blow up in finite time.
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Lifshitz–Slyozov’s model: some existence results

a(x) = aM + aL and b(x) = bM + bL.
aM , bM nondecreasing and Lipschitz out of the origin.
aL, bL globally Lipschitz and vanishing at the origin.
(outflow assumption) ρaM(x)− bM(x) ≤ −x b′M(x)
around the origin.

Theorem [Laurençot]

Under the given assumptions, let f in ≥ 0 be such that∫ ∞
0

x f in(x) dx ≤ ρ.

Then the Lifshitz–Slyozov system has a global weak solution
with f in as initial datum. With f in integrable and a slightly
stronger outflow assumption this solution is unique.
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Lifshitz–Slyozov’s model: some existence results

Measure solutions: results by Niethammer and Pego
(also for the Lifshitz–Slyozov–Wagner model)

Global existence and uniqueness of distributional solutions that
are probability measures with finite first moment for each t .

(B. Niethammer, R. L. Pego, Siam. J. Math. Anal. 31 (2000))

(B. Niethammer, R. L. Pego, Indiana Univ. Math. J. 54 (2005))

Their assumptions entail that Φ0 = +∞ (outflow setting,
Ostwald-ripening-like scenario).

Are we going to remain always in the outflow scenario?
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Lifshitz–Slyozov’s model: local-in-time solutions

ρ > Φ0 > uin

Φ concave and non-constant
a(x) bounded and separated from zero

suppx f (t) is contained in [0, z(t)) with z(t) := C1(1 + t).

Φ(x) ≥ Φ0 +
Φ(z)− Φ0

z
x , ∀0 < x < z

du(t)
dt

=

∫ z(t)

0
a(x)(Φ(x)− u(t))f (t , x) dx ≥ 0

and a fortiori

du(t)
dt

≥ C2

C1(1 + t)
=⇒ Finite time crossing u(t) ≥ Φ0!!!
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Lifshitz–Slyozov’s model: the inflow situation


∂f (t , x)

∂t
+

∂

∂x
[(a(x)u(t)− b(x))f (t , x)] = 0 , t > 0 , x ∈ (0,∞) ,

u(t) +

∫ ∞
0

x f (t , x) dx = ρ , t > 0, plus an initial condition f in(x)

limx→0+(a(x)u(t)− b(x))f (t , x) = n(u(t)) , whenever u(t) > Φ0

The boundary condition represents nucleation phenomena:

d
dt

∫ ∞
0

f (t , x) dx = n(u(t)) whenever u(t) > Φ0.

Potentially wide range of applications:
encompass non-Lipschitz rates at the origin.
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Lifshitz–Slyozov’s model: the inflow situation

Application: protein polymerization and neurodegenerative
diseases [e.g. works by M. Doumic and collaborators]

explicitly considers time variations of the PDF in terms of
probability fluxes: the positive expressions represent gain
terms that account for system transitions into state ðn;mÞ,
whereas the negative terms describe losses from transitions
from ðn;mÞ into other states. The terms on the first line of
Eq. (1) describe the initial primary nucleation step as the
spontaneous formation of growth-competent aggregates
from the interaction of nc monomers. The increase of
aggregate mass through elongation is described by the
terms on the second line of Eq. (1). Secondary processes
are captured by the third and fourth lines of Eq. (1) and
cover several options, including breakage (n2 ¼ 0)
[12,22,24,25], lateral branching (n2 ¼ 1) [11,26,27], and
surface-catalyzed secondary nucleation (n2 ≥ 2)
[15,28,29]. Note that in general monomer dissociation
from filament ends and rejoining of fibrils are necessary
components to ensure microscopic reversibility [31]. The
assumption of vanishing rates of monomer dissociation and
polymer rejoining employed here, however, is justified as
these processes do not significantly affect the early stages
of the reaction [32].
The transition rates entering Eq. (1) can be related to

the total concentration of proteins, mtot, and the bulk rate
parameters kn, kþ, k2 for primary nucleation, elongation,
and secondary pathways, respectively, by requiring the rate
equations for the averages hni and hmi to be in agreement
with existing early-time deterministic models [9–12]
(see the Supplemental Material [34]). This condition yields
α1 ¼ knm

nc
totNAV, μ ¼ 2kþmtot, and α2 ¼ k2m

n2
tot, where NA

is the Avogadro number [21]. Importantly, the transition
rate for primary nucleation, α1, explicitly depends on the
system size, V, while the parameters μ and α2 describing
autocatalytic growth are determined only by the associated
bulk quantities. We expect, therefore, that reducing system
size leads to a transition from a situation when the kinetics
are controlled by autocatalytic growth to a situation when
the fibrillization reaction is limited by primary nucleation.
Thus, primary nucleation events becoming infrequent is at
the origin of the stochastic behavior of filamentous growth
processes in small volumes.
Analytical solution for the PDF.—The master equation

(1) yields differential equations for the principal moments
of the PDF through summation over system compositions.
Solving for moments for times greater than κ−1, with κ ¼
ffiffiffiffiffiffiffiffi
μα2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþk2m

n2þ1
tot

q
being the characteristic time scale

for aggregate proliferation [10–12], but still sufficiently
short for the constant monomer approximation to be valid,
shows that the Pearson correlation coefficient for n and m,
ρn;m ¼ ½hnmi − hnihmi&½ðhn2i − hni2Þðhm2i − hmi2Þ&−1=2,
equals 1 in this limit (see the Supplemental Material [34]).
This result implies the existence of a linear correlation
in this regime between the random variables n and m,
whereby the constant of proportionality is m ¼ ðκ=α2Þn,
t ≫ κ−1. We can directly test this prediction from numerical

realizations of Eq. (1) generated using the Gillespie
algorithm [37] which reveal that n and m are indeed
linearly correlated even before aggregation is detected
(see the Supplemental Material [34]). The linear correlation
between n and m allows recasting the master equation (1)
into an equivalent one with a single variable,

∂Pðn; tÞ
∂t ¼ α1Pðn − 1; tÞ − α1Pðn; tÞ

þ κðn − 1ÞPðn − 1; tÞ − κnPðn; tÞ: ð2Þ

Interestingly, Eq. (2) is analogous to the master equation
of bacterial growth [33], whereby bacteria are constantly
introduced into the system at rate α1 and multiply with rate
κ. This analogy, first hypothesized by Szabo [33], is a
statement of the fact that for times bigger than κ−1 the
average length of aggregates is constant. To define appro-
priate initial conditions for Eq. (2), we match the first
moments of the PDFs of Eqs. (1) and (2) for times t ≫ κ−1,
yielding hniðt ¼ log 2=κÞ ¼ 0. This condition translates
necessarily into Pðn; t ¼ log 2=κÞ ¼ δn;0, therefore also
ensuring that all higher moments of the PDFs of
Eqs. (1) and (2) match for t ≫ κ−1 at leading order. The
exact solution of Eq. (2) subject to the above initial
conditions is (see the Supplemental Material [34])

Pðn; tÞ ¼
2α1=κΓðnþ α1

κ Þ
Γðnþ 1ÞΓðα1κ Þ

e−ðα1þκnÞtðeκt − 2Þn; ð3Þ

where ΓðxÞ ¼
R∞
0 tx−1e−tdt is the Gamma function. The

PDF in terms of the variablem is obtained by implementing

FIG. 1. (a)Different transitions in stochastic protein aggregation.
(b) Time evolution of average mass concentration and 68% con-
fidence bands. Inset: PDF for m at t ¼ 106 minutes predicted
by Eq. (3) (solid line) is compared to numerics. The dashed line is
the solution of [33]. (c) The scaling behavior of the average lag time
with system volume predicted by Eq. (5). Inset: PDF of lag times
for V ¼ 1 nl predicted by Eq. (4) (solid line) is compared to
numerics. The dashed line is from [33]. Calculation parameters:
kn ¼ 4 × 10−13 M−1 s−1, nc ¼ 2, n2 ¼ 0, k2 ¼ 2.5 × 10−8 s−1,
kþ ¼ 2.5 × 104 M−1 s−1, mtot ¼ 5 mM, and V ¼ 1 nl.
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(Images: Michaels et al PRL 2016 - Gillian McGovern, Martin Jeffrey, Plos One)
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Lifshitz–Slyozov’s model: the inflow situation

Application: sea-surface microlayer

MA07CH09-Benner ARI 1 November 2014 12:3
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Figure 1
(a) Size distribution of organic matter in the ocean as a percentage of total organic carbon (TOC) (top) and depth distributions of total
dissolved organic carbon (DOC), high-molecular-weight (HMW) DOC, and low-molecular-weight (LMW) DOC (bottom) at the
Hawaii Ocean Time-Series site. Panel data from Sharp (1973), Benner et al. (1997), and Kaiser & Benner (2009). (b) Conceptual
diagram of the biological pump and the biological, physicochemical, and photochemical processes shaping the size distribution of
organic matter. Panel adapted from Buesseler et al. (2001), US JGOFS brochure.

LMW molecules (Burdige & Gardner 1998). These simple but remarkable observations lead to
numerous insights about the pathways of carbon flow and the reactivity of organic matter in the
ocean.

The size distributions of organic matter presented in this review are not precise, owing to the
variable pore sizes and retention characteristics of commercial membranes and to the different
filtration conditions used by the oceanographic community (Benner 1991, Buesseler et al. 1996,
Guo & Santschi 1996, Benner et al. 1997, Walker et al. 2011). We have considered this shortcom-
ing and focus on the three broad size classes of organic matter most commonly separated using
micro- and ultrafiltration membranes: suspended POC (pore size of 0.1–0.8 µm), HMW DOC
(pore size of 1–200 nm), and LMW DOC (pore size of <1 nm).

PROCESSES SHAPING THE SIZE DISTRIBUTION
OF ORGANIC MATTER
Biological processes play a dominant role in shaping the size spectrum of organic matter in the
ocean. Enzymes mediate the synthesis of macromolecules needed for growth and then disassemble
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Benner, Amon, Annu. Rev. Mar. Sci. 2015

Jenkinson et al: Biomodification of SML mechanical propertiesrt  pa e  of   

Dragčević  et al. (1979) considered that there are three 
possible processes of surface film formation:

(1) release of film-forming agent from particulate 
 matter or micelles (aggregates possibly of surfactant 
matter);

(2) 2D surface spreading, a process familiar from 
 observing oil slicks; and 

(3) transport from the bulk of the water by diffusion, 
convection or both to the sea-air surface or to  bubbles 
either in the bulk-water phase or in  whitecaps, as 
well as by mixing and bubble scavenging. 

Dragčević  et al. (1979) further considered that although 
the source of the film-forming material is the same for the 
bubble surfaces and the sea surface, fluid dynamics pro-
cesses, as well as surface spreading and bubble flotation, 
may fractionate the various components of the material 
differently. These authors concluded that the transport 
and binding of ionic and molecular material at the bubble-
water and air-sea interfaces should depend strongly on the 
properties of the OM in the subsurface layer. Important 
for modulating gas exchange among these near-surface 
fluid dynamic processes might be: wind, wave spectra, tur-
bulence from below, surface convergence and divergence, 
and photosynthetic O2 production. 

The viscous part of the visco-elastic dilational modu-
lus comes from two components: 1) the internal dynam-
ics of the vertical exchanges between the solid, colloidal 
and dissolved material in the bulk and the surface of the 
water; and 2) horizontal compression-dilation straining of 
material closely associated with the surface layer. These 
exchanges may have many different origins, each process 
being associated with a characteristic time (Dragčević  
and Pravdić , 1981). How to separate these two compo-
nents is still not resolved. Concerning the first compo-
nent, Pogorzelski and Kogut (2003) concluded from their 
work on the Baltic and Mediterranean Sea surfaces that, 
“The stress-relaxation measurements revealed a two-step 

relaxation process at the interface with characteristic times 
t1 = 1.1–2.8 and t2 = 5.6–25.6 seconds [which] suggest[s] 
the presence of diffusion-controlled and structural organ-
isation relaxation phenomena. The[se]… results suggest 
that natural films are a complex mixture of biomolecules 
covering a wide range of solubility, surface activity and 
molecular masses with an apparent structural organisa-
tion exhibiting a spatial and temporal variability.”

Concerning vertical molecular diffusion Pogorzelski 
(2001), Pogorzelski and Kogut (2001) and Pogorzelski et 
al. (2005), reviewing previous work, calculated molecu-
lar mass MW from plots of surface pressure, Δτ2D vs. t for 
short (t → 0) and long (t → ∞) times, and also calculated 
diffusion coefficient D as if it had been composed of 
monomers rather than polymeric clusters. Values of Mw 
scattered widely from 2 to 166 kDa, with a typical value 
of 50 kDa. The real diffusion rates Deff were mostly lower 
than D, strongly suggesting that diffusion of the molecules 

Figure 5: Redistribution of surface-associated OM 
and slick patterns by passage of a ship. Surface 
wake pattern 100 min after passage of a ship, showing 
contrast between undisturbed and disturbed surface 
film patterns. Remastered from Peltzer et al. (1992). 
DOI: https://doi.org/10.1525/elementa.283.f5

Figure 6: Lissajous plots of measured dynamic sur-
face tension vs. change in surface area. Values of 
surface tension τ2D vs. γ2D similar to those in Figures 3  
and 4. (Redrawn from Dragčević  et al., 1979). DOI: 
https://doi.org/10.1525/elementa.283.f6
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Lifshitz–Slyozov’s model: the inflow situation

We consider kinetic rates {a,b, n} that satisfy:
0 ≤ a, b ∈ C0([0,∞)) ∩ C1(0,∞) ,
a′ and b′ are bounded on (1,∞) ,

a(x) > 0 for all x > 0 and 1
a ∈ L1(0,1) ,

Φ′ ∈ L1(0,1) ,
0 ≤ n is locally Lipschitz on [Φ0,∞) .

We restrict the choice of initial data to
f in ∈ L1((0,∞), (1 + x) dx) ,
uin := ρ−

∫∞
0 x f in > Φ0 ,

so that the balance of mass makes sense at time t = 0
and the flow has incoming character.
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Lifshitz–Slyozov’s model: the inflow situation

Theorem: existence of solutions

Let {a,b, n}, ρ > Φ0 and f in satisfy our hypotheses. Then,
there exists some T > 0 and a weak solution
0 ≤ f ∈ C([0,T ); w − L1((0,∞), (1 + x) dx))
to the Lifshitz–Slyozov initial-boundary value problem.

This solution is such that:
For each T ∗ < T , f belongs to L∞((0,T ∗),L1((0,∞),dx)).
It can be represented in terms of characteristics.

Moreover, if T is taken to be maximal then either T =∞
or T <∞ and u(t)→ Φ0 as t → T .

(J. Calvo, E. Hingant, R. Yvinec, Nonlinearity 34 (2021))
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Lifshitz–Slyozov’s model: the linearized problem

Write v(t , x) := a(x)u(t)− b(x) for the transport field

Linear problem

Given u(t) > Φ0 for t ∈ [0,T ) and f in, solve for t ∈ (0,T )
∂f (t , x)

∂t
+

∂

∂x
[v(t , x) f (t , x)] = 0 , t > 0 , x ∈ (0,∞) ,

limx→0+(a(x)u(t)− b(x))f (t , x) = n(u(t)) .

Characteristics: for (t , x)∈ [0,T )×(0,∞), maximal solutions of
dX (s; t , x)

ds
= v(s,X (s; t , x)) ,

X (t ; t , x) = x ,

defined on the time interval Σt ,x .
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Lifshitz–Slyozov’s model: the linearized problem

Characteristics: for (t , x)∈ [0,T )×(0,∞), maximal solutions of
dX (s; t , x)

ds
= v(s,X (s; t , x)) ,

X (t ; t , x) = x ,

defined on the time interval Σt ,x .

The associated Jacobian is

J(s; t , x) = exp
(
−
∫ t

s
(∂xv)(τ,X (τ ; t , x)) dτ

)
.
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Lifshitz–Slyozov’s model: the linearized problem

Characteristics: for (t , x)∈ [0,T )×(0,∞), maximal solutions of
dX (s; t , x)

ds
= v(s,X (s; t , x)) ,

X (t ; t , x) = x ,

defined on the time interval Σt ,x .

Tracking trajectories stemming from x = 0:
enter-time associated to the characteristic curve
passing through (t , x)

σt (x) := inf Σt ,x

(time at which s 7→ (s,X (s; t , x)) enters (0,∞)).
separating point: xc(t) := inf{x > 0/σt (x) = 0}
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Lifshitz–Slyozov’s model: the linearized problem

Characteristics: defined on the time interval Σt ,x .
dX (s; t , x)

ds
= v(s,X (s; t , x)) ,

X (t ; t , x) = x ,

Enter-time σt (x) := inf Σt ,x
Separating point xc(t) := inf{x > 0/σt (x) = 0}
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Lifshitz–Slyozov’s model: the linearized problem

Eventual lack of uniqueness for X (s; t , x) at x = 0
Spatial reparametrization: A(x) :=

∫ x
0

dy
a(y) .

This is an increasing diffeomorphism from (0,∞) into itself
that extends to the origin.
Reparametrized transport field: V (t , x) := u(t)−Φ◦A−1(x)

Associated trajectories for (t , y)∈ [0,T )×(0,∞):
dB(s; t , y)

ds
= V (s,B(s; t , y)) ,

B(t ; t , y) = y ,

B(s; t ,A(x)) = A(X (s; t , x))
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Lifshitz–Slyozov’s model: the linearized problem

Proposition

For each t ∈ (0,T ), the following holds:
The map x 7→ X (t ; 0, x) is an increasing C1-diffeomorphism
from (0,∞) to (xc(t),∞).
The map s 7→ σ−1

t (s) is a decreasing C1-diffeomorphism
from (0, t) to (0, xc(t)).

(J.Calvo, E. Hingant, R. Yvinec, Nonlinearity 34 (2021))

f (t , x) = f in(X (0; t , x))J(0; t , x)1(xc(t),∞)(x)

+n(u(σt (x)))|σ′t (x)|1(0,xc(t))(x) .

J.Calvo, E. Hingant, R. Yvinec The Lifshitz–Slyozov system with inflow conditions



Lifshitz–Slyozov’s model: the linearized problem

f (t , x) = f in(X (0; t , x))J(0; t , x)1(xc(t),∞)(x)

+n(u(σt (x)))|σ′t (x)|1(0,xc(t))(x) .
(1)
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Lifshitz–Slyozov’s model: local existence

Using the strategy of [J.-F. Collet, T. Goudon, Nonlinearity 13
(2000)] we prove existence by a fixed point argument on u(t):

Let δ > 0 such that 2δ < uin − Φ0.
Define a map G on {u ∈ C([0,T ))/Φ0 + δ ≤ u(t) ≤ ρ} by

u(t) 7→ f (t , x) 7→ ũ(t) = G(u)(t)

= max

{
Φ0 + δ, ρ−

∫ ∞
0

x f (t , x) dx
}

where f (t , x) solves the linearized problem
with the given u(t) and f in.
The regularity of characteristic trajectories entails the
continuity of the fixed-point map G via (1).
ũ′(t) is uniformly bounded (via Dunford–Pettis). Then
Schauder’s fixed point theorem can be applied.
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Lifshitz–Slyozov’s model: uniqueness

Uniqueness

Let our running assumptions on the rates and initial data be
satisfied. Assume that there exists x∗ > 0 such that
Φ is monotone on [0, x∗). Then, for any given T > 0, there
exists at most one weak solution to the inflow Lifshitz–Slyozov
system on (0,T ) with the given initial data.

(J. Calvo, E. Hingant, R. Yvinec, Nonlinearity 34 (2021))

Proof by an adaptation of the technique introduced in
[P. Laurençot, Indiana Univ. Math. J. 50 (2001)]:
we derive an evolution equation for quantities of the form

F+(t , x) =

∫ ∞
x

f (t , y) dy .

Gronwall estimates =⇒ uniqueness for these quantities.
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Lifshitz–Slyozov’s model: particular cases

Proposition (global existence)

Assume Φ(x) ≥ Φ0 for all x > 0. Then, the solution to the
Lifshitz–Slyozov equation constructed in our existence theorem
is global, that is T =∞.

Proposition (finite-time existence)

Assume that f in is compactly supported, that Φ is convex and
strictly decreasing and that there exists numbers a, a such that
0 < a < a(x) < a <∞ for all x > 0. Then, the solution to the
Lifshitz–Slyozov equation constructed in our existence theorem
is not global, that is, u reaches Φ0 in finite time.

(J. Calvo, E. Hingant, R. Yvinec, Nonlinearity 34 (2021))
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Recap

The Lifshitz–Slyozov model with nucleation boundary
conditions can be used to describe polymerization
phenomena in different contexts.
We provide a local existence result + representation
formula under broad hypotheses.
A continuation criterion is given, together with examples of
both local and global solutions.
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